CLARIN Workflows Architecture Explanation
v1.0

2Introduction

3Workflow elements

3Workflow descriptions

3Descriptions requirements

7Description requirements list

7Workflow editors

8Intuitive editor

8SMART editor

9Workflow editor requirements list

10Workflow Engines

10Workflow workbench

10Workbench requirements

Introduction

One of the main points of CLARIN infrastructure will be the interaction between tools and data hosted in different computers. This interaction must be highly commanded by standards and must be easy to use by CLARIN users.
Tools will be exposed in CLARIN as web services and the interaction between them will be done using workflow technologies. The objective of this document is to describe how it is going to be this workflow technology in CLARIN and how it is going to be integrated with other CLARIN elements like the Registry.
The idea of workflow is not new. Many workflow standards and initiatives have been developed, but none of them has the metadata and structured information that CLARIN will have stored in its Registry. This extra element and extra information will make CLARIN workflows technology more efficient and easy to use for CLARIN users.
The workflow system in CLARIN will be composed mainly by 3 elements:
1. Workflow descriptions: All workflows, like algorithms, must be described in a non ambiguous way. This description will be used to explain to workflow engines how to execute them.
2. Workflow editor: Although workflow descriptions will be stored in text files, XML, and users will be able to edit them in any text editor, a powerful GUI for workflow design is needed. “Smart” editors will help in the task of workflow creation when users are not specially advanced computer users.

3. Workflow engine: Piece of software that will execute the workflow as it is explained by the workflow description file.
Also, as a hybrid element we can find the Workflow Workbench. This piece of software combines the workflow editor and the workflow engine.
Workflow elements

Workflow descriptions
Essentially a workflow is just the textual representation of the interaction between web services. Also it can contain some default parameters to be sent to these web services. A workflow description file does not pretend to be more than that.
The workflow definition is made in a non-ambiguous way, letting any software to execute it expecting the same results. It means that workflows can be shared between different applications.
Workflow Descriptions will be executed and processed by Workflow Engines and all information required for its execution will be contained in the description.
Workflow Descriptions requirements

Workflow descriptions should be able to describe any workflow to be processed in CLARIN. Helping to investigate these requirements, the next section proposes a basic scenario and extracts basic requirements of workflow descriptions.
Of course, this is a basic scenario and more complicated scenarios will lead us to new requirements. In any case, the following scenario is a good beginning.

Scenario: Historical search using query expansion
· The user wants to query one word in historical documents in some corpora.
· The word may have different spelling depending on the age of the documents.
· Our Workflow will do a query expansion with the desired word, will get documents having the expanded words and will summarize the most relevant documents.

Step by step

· Step 1: Query expansion.

· Step 2: Query corpora for documents including the expanded words.

· Step 3: Count word frequency in historical documents
· Step 4: Summarize N documents with most word frequency

Components needed for this scenario

[image: image1]
Step 1: Query expansion

[image: image2]
Step 2: Corpora Query

[image: image3]
Step 3: Count word frequency

[image: image4]
Step 4: Summarize documents

[image: image5]
Error handling in workflows. More requirements

[image: image6]
Description requirements list

The following list is the requirements list extracted from previous scenario.

· If then else clause

· Loops (while, for each, for to) clauses

· Parallelization features. (also in loops)

· Data manipulation of web services results.

· Constant and Variable declaration. Basic operators.

· Exception handling

Workflow editors

Probably the workflow editors in CLARIN will be the most elaborated part of the whole workflow system. Although advanced users could create their own workflow descriptions using a basic plain text editor, CLARIN focuses very much on users that do not have large knowledge on computers.
Trying to reach those non expert users, CLARIN workflows must be really easy to create and this will be done thanks to a very INTUITIVE and SMART editor.

Intuitive editor

CLARIN workflow editor must be based on a good graphical user interface. It must be able to show to the user the workflow description in a clear way and it must be able to add, delete and modify the workflow description elements easily as well.

Registry browser, registry search and drag & drop features, contextual help should be integrated in the editor.

Also different user profiles in CLARIN workflow editor should be configured. Intuitive editors shouldn’t bother novice users with advanced questions.

SMART editor

All information related to web services, data types, data structures, etc… will be stored in the CLARIN Registry. Workflow editors should be “smart” enough for querying the CLARIN Registry and get relevant information to help to the user.
There are many situations where an editor can help to the user. Let’s see some examples:

· Applications remember similar operations in the past. “You connected two web services similar to this one using converter AtoB. Do you want to do it again?”

· Use of community intelligence stored in the Registry. “250 users connected these 2 web services in other projects using converter AtoB, do you want to do it as well?”

Let’s consider the following example, and look at it from closer, to see how the editor can help the user behind the scenes.

· User wants to connect 2 web services.

· Web service X

· Web service Y

· X’s output needs to be Y’s input.

· But X’s output is not in the proper format for being Y’s input.

A “silly” editor would show a big error message to the user, similar to “Error: X output cannot be Y input.”

This message is enough to discourage lots of novice users in CLARIN. CLARIN “smart” editor should have another behaviour and using CLARIN Registry avoid the problem.
· The smart editor behind the scenes will do the following tasks:
· Get information about web service X. Which format has X’s output?
· Get information about web service Y. Which format requires Y’s input?
· Find a converter. How can data in format X be transformed in format Y?
More deeply, the editor will:
1. Get information about web service X

· It is required to query the registry. Still it is not decided how this query will be but intuitively it should look like:
· specObject = GetWebServiceSpecification(X_persistent_id)

· This call will return the specification where explains that X’s output format follows the standard A.

2. Get information about web service Y
· Like previously with X, the editor queries the Registry for Y’s specification.
· specObject = GetWebServiceSpecification(Y_persistent_id)

· This call will return the specification where explains that Y’s input format follows the standard B.
3. Find a converter from A to B
· It will be done using the Registry as well. Also it is not developed yet but it will be something similar to:
· ResourceList = GetResourceList(“/standards/converters”)

· The editor has downloaded the list of converters (resources under the standards/converters branch). Now inspecting this list of resource descriptions, the editor will find the required converter (if any).

4. Introduce the converter in the workflow description
· Before the insertion of the converter in the workflow, depending on the user’s profile:

· the user will be asked for confirmation or

· the user will be noticed of different converters if more than one is available or

· simply won’t be notified at all (novice users)
· The editor introduces the converter in the workflow between X and Y.
· The workflow description will keep this converter information. Engines executing this workflow will need to know about this conversion.

Workflow editor requirements list
1. Graphical representation of all workflow description elements. (loops, if then clauses, parallelization, exceptions, etc…)

2. SMART Editor

3. Different user profiles (Advanced users will want to know more about automatic decisions taken by the workbench while novice users won’t want to decide anything)

4. Intuitive Editor (Drag & Drop features, Registry browser, etc...)
Workflow Engines
Workflow engines are applications that execute workflows as are described in the workflow definition files. Depending on the user needs, workflow engines can be placed in different scenarios:
1. Local machine engine: Local computer engine used by a user to process workflows.

2. Shared Engine: Placed in a server where users can send their workflows and will be processed depending on scheduling policies.

Local machine engines may let to the user more interaction while it is processing the workflow like run-pause controls, debugging information, breakpoints, maybe some user interaction.

Workflow workbench
We call workbench to the software application that contains an editor and an engine. Engines can add value to the editor and include debugging features, and some interaction while the workflow is being processed that will help refining the workflow description.

Also, editor can help even more to the user if it is aware of the workflow execution results, an for novice users, having all components together will help to the global understanding and managing.
Workbench requirements

· All workflow editor requirements
· Debugging tools: breakpoints, Start-pause execution and inspection of intermediate steps.
· Partial workflow execution and reuse of data obtained in previous executions. (To avoid repeating calls to web services while testing)
· Output console

The three last points will bring big help on workflow design. They will give information to the user related to the execution. Possible errors, mistakes will be traced easily (by human and automatically as well).
3

4

2

2

1

Calculations toolbox

General Corpus

query

Corpus XVIII

Query Expander

sort_by_value

frequency

query

expand

Client

query_expander = ws(registry_PID1)

corpus_XVIII = ws(registry_PID2)

corpus_general = ws(registry_PID3)

calculator = ws(registry_PID4)

expanded_queries[] = query_expander.expand(initial_query)

for each query in expanded_queries

 if query.century == "XVIII" then 	

 docs[] = corpus_XVIII.query(query.word)

 else

 docs[] = corpus_general.query(query.word)

 end

	

 for each doc in docs

 freq[doc.id] = calculator.frequency(query.word, doc)

 end

 sorted_freq = calculator.sort_by_value(freq)

 for i=0 to N

 output.append(docs[sorted_freq[i].key])

 end 	

end

Requirements:

CLARIN workflows must interact with WS. REST and SOAP without distinction.

query_expander = ws(registry_PID1)

corpus_XVIII = ws(registry_PID2)

corpus_general = ws(registry_PID3)

calculator = ws(registry_PID4)

expanded_queries[] = query_expander.expand(initial_query)

for each query in expanded_queries

 if query.century == "XVIII" then 	

 docs[] = corpus_XVIII.query(query.word)

 else

 docs[] = corpus_general.query(query.word)

 end

	

 for each doc in docs

 freq[doc.id] = calculator.frequency(query.word, doc)

 end

 sorted_freq = calculator.sort_by_value(freq)

 for i=0 to N

 output.append(docs[sorted_freq[i].key])

 end 	

end

Requirements:

IF THEN ELSE clause

Values coming from WS are used as conditions

Be able to access to specified data inside complex objects coming from WS.

Constants and Variables declaration for internal workflow use. Even complex types could be important. Scope of variables is an issue as well. (all global can cause problems overriding variables)

query_expander = ws(registry_PID1)

corpus_XVIII = ws(registry_PID2)

corpus_general = ws(registry_PID3)

calculator = ws(registry_PID4)

expanded_queries[] = query_expander.expand(initial_query)

for each parallel query in expanded_queries

 if query.century == "XVIII" then 	

 docs[] = corpus_XVIII.query(query.word)

 else

 docs[] = corpus_general.query(query.word)

 end

	

 for each parallel doc in docs

 freq[doc.id] = calculator.frequency(query.word, doc)

 end

 sorted_freq = calculator.sort_by_value(freq)

 for i=0 to N

 output.append(docs[sorted_freq[i].key])

 end 	

end

Requirements:

LOOP clauses

For each

While

For to

Also Loops in parallel. WS are slow and it is not needed to do it sequentially. Parallelization features are required.

query_expander = ws(registry_PID1)

corpus_XVIII = ws(registry_PID2)

corpus_general = ws(registry_PID3)

calculator = ws(registry_PID4)

expanded_queries[] = query_expander.expand(initial_query)

for each parallel query in expanded_queries

 if query.century == "XVIII" then 	

 docs[] = corpus_XVIII.query(query.word)

 else

 docs[] = corpus_general.query(query.word)

 end

	

 for each parallel doc in docs

 freq[doc.id] = calculator.frequency(query.word, doc)

 end

 sorted_freq = calculator.sort_by_value(freq)

 for i=0 to N

 output.append(docs[sorted_freq[i].key])

 end 	

end

Requirements:

Every operation, even if it is small should be a web service.

For optimum performance, very common tasks could be web services hosted in the CLARIN user computer (but still as a web service).

query_expander = ws(registry_PID1)

corpus_XVIII = ws(registry_PID2)

corpus_general = ws(registry_PID3)

calculator = ws(registry_PID4)

expanded_queries[] = query_expander.expand(initial_query)

for each parallel query in expanded_queries

 if query.century == "XVIII" then 	

 docs[] = corpus_XVIII.query(query.word)

 else

 docs[] = corpus_general.query(query.word)

 end

	

 for each parallel doc in docs

 freq[doc.id] = calculator.frequency(query.word, doc)

 end

 sorted_freq = calculator.sort_by_value(freq)

 for i=0 to N

 output.append(docs[sorted_freq[i].key])

 end 	

end

on error run alternative webservice

Requirement:

Exception handling (special behaviour when an error is raised by a web service). Since the Registry will have a lot of information about alternative WS, mirrors, etc… CLARIN could handle it automatically in many cases.

PAGE
1

