SURVEY ON WORKFLOW EDITOR’S
Santiago Bel & Marta Villegas (UPF)

2Introduction

2scenario

41. TRIANA:

41.1 Technical overview

41.2 Descriptive information

51.3 GUI

5a) Installation

5b) Editing workflows:

6exercise: CQP query

6exercise: Currency Converter:

7exercise: Get Language

82. TAVERNA

82.1 Technical overview

82.2 Descriptive information

92.3 GUI:

9installation

9workflow editor

10interesting features:

10inputs

12fault tolerance

12Resource usage report

12Discovery, metadata-management and grimoires registry:

14exercise: CQP query:

15Exercise: GetLanguage + CQPquery

16exercise: Currency Converter:

173. KEPLER

173.1 Technical overview

173.2 Descriptive information

183.3 GUI

19exercise: CQP query with boolean condition:

19exercise: GETLanguage + CQP query:

20exercise: Currency Converter:

21exercise: Get Language

Introduction

The aim of this document is to provide a survey of workflow editors from both a technical overview and a user perspective. For each WF editor, we provide (i) technical overview, (ii) 'descriptive' information and (iii) 'GUI' information.

Technical overview focuses on technical aspects such as language and paradigm used, concurrence and parallelism, loops, support for conditional structures, exception handling ...

The 'descriptive' information was gathered from documentation/www and aims at describing: developers involved, maturity of the project (released versions, list of projects/clients reported, ...), community (user grups, support assistance, forums, repositories, ...), eHumanities (to how extend the project is used in eHumanities), future plans, integration and documentation.

Finally, GUI information reports the experience we had when working with the GUI. Notice that, in this case, we report the experience of a non-expert user. For each GUI, we have installed the application and tried to edit some workflows. The initial exercises include the following web services:
CQP query (http://igraine.upf.es:9100/cqp/service.wsdl) a service wich given a CQP query returns the corresponding KWIC. To avoid failures due to traffic problems, the whole process goes as follows: (i) the workflow sends the input query to the server which returns a tiket number, (ii) at the server side, tikets are stored in a db and are launched agints the corpus (iii) a second process of the workflow checks whether the tiket is ready and returns a boolean value true/false (iv) finally, the last process recovers and sends the available results to the client. This service involved three operations: QueryCqpExpression, ResultsAvailable and GetPendingResults. Note that this workflow includes an IF THEN condition: the one which checks wheter the tiket is ready.

GetLanguage (http://nlp.racai.ro/WebServices/LangIdWebService.asmx?WSDL) this is a simple web service than given a input with a sample text retuns language and confidence rate.

Currency Converter: (http://www.webservicex.net/CurrencyConvertor.asmx?WSDL) used to check the use of complex input types.

scenario
GUI information devotes special attention to input/output editing as this is a central part of the workflow definition task. Typically, a workflow consists of a serie of processors which from a given input eventually return a final output. Processors require input(s) in a given format and return outpu(s) in a specific format.

WSDL types inputs/outputs using basic types such as string or integer. This type system is clearly not enough and, hence, each workstation includes some kind of input/output renderers. As we will see, the way GUIs address this input/output rendering is quite different. Besides, most of the input/output rendering tools included in the GUIs are domain specific and therefore are no useful for our purposes.

Initially, the workflow exercises we were working with were quite simple and involved processes which were designed to work together. Thus, the task of linking processes was not been very hard.

In order to simulate a scenario where remote processors from different providers were involved, we tried to define a workflow which can be summarized as follows:

1) for a given input text, we want to know the language it is written in using the GetLanguage WS.

2) for each word in the input text, we want to get the KWIC from CQPquery WS. Depending on the language value returned in previous step, the name of the corpus involved will change (thus, if language is 'english' the corpus is CORPUSTECNICEN, if language is ‘spanish’ the corpus is CORPUSTECNICES, and so on)

Although this scenario is not very interesting, it proved useful for our testing purposes. This apparently trivial scenario involves some tasks that posed too many problems:

1) an input text is sent to GetLanguage WS which returns a complex output type with a 'language label' and a 'confidence rate'. We need to manage this output complex data type in order to identify the 'language label' and the 'confidence rate'. As we will see, all GUIs editors include some in-house local tools that allow us manage complex data. For the sake of simplicity, we obviate the 'confidence rate' and only get the 'language label'. Notice that our scenario could be naturally improved by some condition like: "if confidence rate is higher than X then ... , else ...".

2) Once we get the language label, we want to send each word in input to the CQPquery WS in order to get their KWIC. This web service needs two inputs: the word to be searched and the corpus where the word is to be searched. The corpus involved depends on the language, thus we have three different corpora according to weather the language is English, Spanish or Catalan. Note that this apparently simple scenario involves some difficult tasks:

- the CQPquery web service needs to be triggered for each word in input string. Thus we need for some kind of 'for each' loop.

- the CQPquery requires two inputs: the word to be searched and the corpus. In our case, we have a list of words and a single 'corpus label'. In other words, the iteration process not only needs to read the whole word list but also needs to ‘generate’ the corpus label.

- we need to follow some format requirements, thus input words in CQPquery web service are [word="inputword"]. In this case we need some format conversion.

- finally, we need some conditional control in order to set the corpus according to the language label. In this case we needed an ‘if then, else if”.
3) Once the word(s) and corpus are sent to CQPquery WS, the remote server returns a ticket number and stores the query in a dB. Queries in dB are executed and when they are ready they are labeled as ‘true’. A second process named ResultsAvailable sends a ticket number to the server and checks weather it is ready. When we get a ‘ready’ ticked, we can use a third process named GetPendingResults which sends the ticket to the server and returns the results. Note that here we not only need a conditional control but also a retry loop which, in case the ticket is not ready, retries the query.
The overall process can be summarized as follows:
(language,confidence) = ws.GetLanguage(input_text)

If language = English Then corpus = EN

if language = Spanish Then corpus = ES

if language = Catalan Then corpus = CA

for each word in input_text

tiket = ws.CQPquery(word,corpus)

status = ws.AvailableResults(tiket)

if status true then go to KWIC = ws.GetResults(ticket)

if status false then go back to ws.AvailableResults(tiket)

1. TRIANA:

1.1 Technical overview

	paradigm
	Data flow based

	language
	Proprietary language.

	concurrence
	It has a good level of concurrency control with merge and block components.

	parallelism
	being a data flow driven software has a very good level of parallelism.

	loops
	Triana has a very good level of loop control. It can be done in several ways depending on the user decision and it accepts dynamic variables to control the exit condition. Any logic operation with variables can be used for the exit condition.

	conditions
	The conditional components are not as powerful as the loop components and there is only a very basic IF clause

	exception handling
	Exception handling is good enough. Every component may have a error output (called error node). Actions can be programmed in the workflow when an error appears.

	
	Triana does not include a way of insert small algorithms in the workflow (it must be a web service or a local compiled component).

1.2 Descriptive information

“Triana is one of two test bed applications for GridLab, a large EU funded project. The aim of GridLab is to develop a simple and robust grid application toolkit (GAT) enabling applications to exploit the power of the GRID. Triana is ready to use GridLab GAT when it becomes available.”
	developers
	Developed by Cardiff University

	domain
	Astronomy and life sciences.

	maturity
	Projects using Triana: GridOneD, GEO 600, BiodiversityWorld, DIPSO, FAEHIM, GEMMS, GENIUS Grid portal, Data-Mining Grid

Google search:
triana “web services” :

7,770 results
triana webservices :

20,200 results
The last publication reported on the Triana's web page is 2007.

	future plans
	

	community
	Information taken from NesCForge:

Public mailing lists:
6 lists with no activity
Public Forums:

2 public forums with no activity
First release:

beta version 3.0 date: 2004-08-12
Last release:

version 3.2.2 date: 2007-04-24

	eHumanities
	The DataMiningGrid project is a shared cost Strategic Targeted Research Project (STREP) granted by the European Commission (grant no. IST-2004-004475). It was part of the Sixth Framework Programme of the Information Society Technologies Programme (IST)
Consortium: University of Ulster, Fraunhofer Institute for Autonomous Intelligent Systems, Daimler Chrysler, Israel Institute of Technology, University of Ljubljana, Faculty of Civil and Geodetic Engineering
Based on Triana

170 downloads from sourceforge

	integration
	Triana runs on windows and linux.

	documentation
	Enough documentation when starting. However most of the functionalities and tools are not documented. It is hard to guess....

NOTE: According to Data Mining Grid documentation, the integration of the project as a local tool in Triana is done by copying directories in the Triana distribution (no plugin tool available). When we installed DataMiningGrid we got some problems: unable to load web services and drag and drop elements. We reinstalled Triana distribution without DataMiningGrid.
1.3 GUI

Includes help and tutorial (with some missing images and not completed). Problems when looking for help/support on the web. Not easy to start working with it.

a) Installation

Easy installation. Well documented.

To run the GUI we need to define TRIANA and JAVA_HOME variables.
b) Editing workflows:

The task of editing workflows is a bit hard.

Local workflows:

Triana includes a large library of “local tasks”. Ejecutar las “local tasks” de ejemplo siguiendo el manual es realmente muy fácil y user-friendly: los parámetros se entran via pop-up windows muy chulis y 'especiales' para la task, las salidas se muestran muy chulis (son custom tools, ver más abajo)

Distributed workflows:
Distributed components within Triana include grid-oriented components (GRAM
 & GRMS
) and service-oriented components (WS and P2P). Service-oriented components use GAP Interface.
Once a WS is imported it appears as a tool in the tool tree alongside the other tools and can be connected into a Triana workflow in exactly the same manner of other 'local' tools.
Triana includes a graphical editor where desired processors are dragged into the editor window. Input/output information is displayed in a pop-up window when the mouse is over the processor. As soon as we add a new processor to the editor, the system establishes the links between them. This is a good thing. However, sometimes we have to change the links.

Input / output

In Triana input renderers are 'tools' and we find them in the tool tree for 'Triana Tools' together with any other processor. The user needs to choose the relevant input/output tool in order to read/see inputs/outputs. As Triana was created to support astronomy and live sciences, most of the input/output tools are irrelevant to us.

In order to deal with complex inputs, we need to generate static type classes and create custom tools.
En Taverna defines los inputs del WS añadiéndolos en el nodo input del árbol: dándoles un nombre y diciendo qué processor es input. Automáticamente lo visualizamos en el editor gráfico y se añade el correspondiente 'data link' en el arbol del editor. Podemos también añadir metadatos del tipo la ayuda al usuario que deberá rellenar el input.

Searching:

Triana includes a searching facility. However we have not been able to search in the UDDI repeository.
exercise: CQP query

We have not found the way to implement the IF THEN condition, so we obviated this step. The resulting workflow goes as follows (where tools in bold are remote tools and tools in italics are local tools):

StringGen

QueryCqpExpression
GetPendingResults

StringViewer
StringGen
Unable to correctly run the experiment. The workflow output returns the following message error:
wspeer.ExceptionMessage
CAUSE:HTTP...................
EXCEPTION:
org.apache.axis.AxisFault
MESSAGE: (500)Internal Server Error
Error message from debugger:................
exercise: Currency Converter:

CurrencyConverter uses complex inputs/outputs. We have used the WSTypeGen and WSTypeView local tools to run the experiment. The WSTypeGen opens a popup window with a form which allows entering input as a sequence of simple inputs. For each 'simple input', the system gives us the possible values (In Taverna we did not find this utility).

To access the output we have to open the WSTypeView tool (I don't konw what would happen if we had a long output).
exercise: Get Language

CurrencyConverter also uses complex input/output types.

In this picture we can see how to access theresults.[image: image1.png]33 Applications Places System

=5 gfll Thujul 31, 5:47 PM

=

File Edit Run Tools Services Options Window Help

BRI

DREd gD
Q300N i

Triana

[BEE)

[pecrages e B =

) stingviewsr
) substring
) systemout
3 Timer
B Swenservices
) wspariGen
) wepartviewer
O WsTypeGen
) WSTypeviewer
) »sd_boslean
) wsd_doutle
Y rsaim
[ssd_string
4 context
i
SlJob
) Tempiae &
I pemos
& Searing
B mput
 Cetaog

T stringGen [« || O Trianagetianguage

TS T/PEVIBWEr

[ust
) ReadDoc
[search

= output

T Processing

Hcrid L

CetLanguage
GetLanguageResponse

GetLanguageResponse
getCetlanguageResult

LabgIDResult
getConfidence

double

69.28383268944043)

gettanguage
Javaang String

[spanish

[] Auto commit

oK

il [[e[[T

[T»

@) (@ untitle... |[@ cmail ... [E ws_s

(@ marta... |[% Wana | @ Downl

Debug... | I G

(@ httpsy... |[@ About

2. TAVERNA

2.1 Technical overview

	paradigm
	Data flow based

	language
	 Proprietary language, the Simple Conceptual Unified Flow Language or SCUFL .
Parece que Taverna2 no utiliza el Scufl pero no he logrado encontrar qué lo reemplaza.

Taverna works with XML files using SCUFL language. Taverna group does not recommend editing the files outside Taverna editor and SCUFL language can change without any notification.

	concurrence
	The concurrence offered by Taverna is basic and based on merge 2 branches when both are finished. It is enough for many workflows but some advanced ones are outside this approach.

	parallelism
	Parallelism is a primary concept in Taverna since it is Data Flow driven and almost all tasks are performed in parallel when possible. The exception is the task that has iteration. It is performed sequentially when it could be processed in parallel.

	loops
	Taverna has not a while component that let iterate many times the process inside it but there is the possibility to use list of items as input in the operations and set the option “iterate”. It will execute the operation once per item. It is allowed as well to set several input lists and the input will be taken one item of each list per processing iteration or as a Cartesian product per iteration. In most of the cases this system of iterations is enough but should have more powerful loop control like while statement.

	exception handling
	Taverna has a basic exception handling mechanism included. It supports retry of invocation with configurable timeout and number of retries, and user-defined alternatives for processors failing constantly.

	
	All operations in Taverna must be encapsulated as a web services or local services programmed in java. There is no possibility of simple data manipulation in the workflow. It is very useful for connection between processes. Some times it is required to manipulate a little bit an output of a web service for being the input of another one, just a simple mathematical operation for instance.

2.2 Descriptive information

	developers
	Created by the my

HYPERLINK "http://www.mygrid.org.uk/"
Grid project, and funded through OMII-UK
Original myGrid Partners :
EMBL-EBI University of Manchester

 HYPERLINK "http://www.cs.ncl.ac.uk/" University of Newcastle University of Nottingham

 HYPERLINK "http://nlp.shef.ac.uk/mygrid/" University of Sheffield

 HYPERLINK "http://www.ecs.soton.ac.uk/" University of Southampton

 HYPERLINK "http://www.it-innovation.soton.ac.uk/" IT Innovation Centre

	domain
	e-biology

	maturity
	Figures taken from sourceforge (at 28 July 2008):

downloadable files:
49671 total downloads to date

taverna -1.7.1

1513 downloads to date
Many 'e-biology' projects can be accessed using Taverna: Seqhound, BioMoby, BioMart, BioTeam iNquiry, Utopis, BioMart, EMBOSS, ...

Taverna (and myExperiment) is present in many conferences and international events. For 2008, myExperiment participates in: l Intelligent Systems for Molecular Biology Conference (ISMB 2008) in Toronto, 9th annual Bioinformatics Open Source Conference BOSC 2008, e-Science All Hands Meeting in Edinburgh, ...
Google search:

taverna “web services” gives 20,000 results

taverna webservices gives 24,500 results

	future plans
	Taverna 1.7.1 was launched on 2007.

Taverna 2 to be launched this year (2008). A plugin is already available. We have used it with no problems (still have to see improvements).
Taverna includes a 'check for updates' service and a plugin service, to keep the tool updated.

	community
	Mailing Lists: Different mailing lists with 2580 users, moderate usage.

Taverna has a social web site named myExperiment with over 964 users, 82 groups, 301 workflows, 101 files and 15 packs. MyExperiment 'makes it reallye asy to find, use and share scientific workflows and other files, and to build communities'.

	eHumanities
	text-mining

	integration
	Taverna runs on any modern PC or Mac, running any recent version of Windows, Linux, OSX and most UNIX like operating systems as long as Java version 5

	documentation
	Good documentation. However, some examples in the documentation are not in the distribution.

Although the GUI is really friendly and 'easy' to use, it does not include any help.

2.3 GUI:

Taverna GUI is nice and friendly. It is easy to start with.

installation

Easy installation and execution. Well documented.

workflow editor

The editor is friendly and nice and includes drag-and-drop facilities and visual facilities.

Taverna has two spaces: the 'editor' (Advanced Model Explorer) and the visualization. It also includes and interactive graphical (experimental) editor.
The 'editor' panel contains is a tree with five initial branches for processors, inputs, outputs, data connections and coordination links.

Basically, the process of editing workflows goes as follows:
The user selects the desired processors. When processors are drag-and-dropped into the 'editor' panel they are automatically placed under the processors node.
The user has to define the inputs and outputs of the workflow and link the processors.
The graphical panel displays the diagram as we are editing the workflow. The system allows for different visualizations. The diagram can be saved.
interesting features:

· 'Resource usage report' functionality useful for documentation purposes (see figure)

· the workflow diagram includes different visualization options
· For large workflows we can mark some non-interesting parts as 'boring'. Boring processors are hided from diagram.

· myExperiment pluggin allows access to workflows in myExperiment.(browsing, direct invocation)

· Provenance tools: The Taverna Log Book is a plugin for Taverna that allows users to automatically log their experiments in a database and browse, reload, rerun and maintain past workflows.

· LSID (Live Science Indentifiers) for editable metadata associated to a workflow. Any time we edit a definition the system connects to whatever LSID authority is configured in the mygrid.properties file and ask for a new LSID suitable for a workflow definition. This then provides a globally unique identifier for the workflow definition.
· we have the ability to save 'input configuration' to re-run the experiment with the same data input.

· Ability to define alternate processors in case of failure

· Taverna allows the user to inspect and save intermediate inputs and outputs of individual processors both during and after a workflow invocation.

· Good discovery tool (services can be discovered by exploiting their semantic descriptions. This is done by Tavern Feta Plug-ug-in connects to an instance of the Feta Engine web service and allows users to:
· Includes a BeanShell editor tool (easier than working with Java, no need to compile and use external tools)

inputs

The edition of inputs (and outputs) in Taverna is different from that of Triana and Kepler. In this case, inputs are not longer listed together with 'processors'. They have a different status. The user creates as many inputs as needed under the branch 'inputs' in the 'editor' panel. The 'input' branch is populated with the created inputs. The user names the input and edits the metadata assigned to it. Metadata includes (i) free text description (used to give instructions to other users about how to populate the inputs, good idea!) and (ii) tagging of the input (or output) with MIME types.

In case of outputs, MIME types are crucial as they determine the selection of renderers within the result browser (see below).
Editing complex inputs in the workflow: when a webservice has a complex input (an xml document) it is hard for the user to provide the required data without having previous knowledge of the structure. Taverna includes a 'XML splitters' processor which deals with complex inputs. XML splitters show the child inputs to the user. Child inputs can be 'edited' as simple inputs and the values are assigned in the standard manner. When the workflow is run the splitters reconstruct the XML to then be used when invoking the service.

When a processor has a complex input, the system automatically offers the possibility to include a XMLsplitter to deal with.

Assingning values. Contrary to Triana and Kepler, in Taverna inputs do not include their values. That is, the assignation of values to inputs is not done when editing the workflow but once the workflow is invoked. When a workflow is invoked, a pop-up window is displayed to assign input values. We can enter values in different ways: typing, reading from a file, reading from a directory (all files with extension *), from a previously saved 'file input definition'.

Note that the assignation of values in Taverna is 'independent' from the workflow definition. In Triana, for example, if we want a workflow to read from a file, we need to select a specific 'read from file' tool. Similarly, if we have a xml output, Taverna includes a xml viwer which automatically displays the data and allows us to save it. In Triana, we have to choose before hand whether we want to see the data (no syntax displayed) or save it.
 The system allows specifying default values. In this case, default values are assigned during the edition process.

When running workflows requiring inputs, these can be saved. This allows to re-run the workflow using the same inputs (this is a nice utility).
outputs

Taverna includes different renderers to display results (results may have different formats). Provided the correct MIME types are specified for the workflow output, the renderer selection mechanism will by default select an appropriate renderer component. (We have correctly seen plotters, graphics, xml files and text files texto etc correctamente without having to specify anything).

The list of MIME types includes:

text/plain=Plain Text

text/xml=XML Text

text/html=HTML Text

text/rtf=Rich Text Format

text/x-graphviz=Graphviz Dot File

image/png=PNG Image

image/jpeg=JPEG Image

image/gif=GIF Image

application/zip=Zip File

chemical/x-swissprot=SWISSPROT Flat File

chemical/x-embl-dl-nucleotide=EMBL Flat File

chemical/x-ppd=PPD File

chemical/seq-aa-genpept=Genpept Protein

chemical/seq-na-genbank=Genbank Nucleotide

chemical/x-pdb=Protein Data Bank Flat File

chemical/x-mdl-molfile

Taverna includes third party visualisation tools. This is the case of SeqVISTA graphical tool (which displays some chemical/...' types) and Jmol (an open-source Java viewer for chemical structures in 3D).

(In Triana and Kepler, outputs are tools, so we have as many outputs as visualization needs. When we create an output we have to face a large renderers list and choose the correct one. In Taverna, renderes are ‘outside’ the workflow itself, we only have to choose the type and the tool correctly displays the data with the appropriate renderer (we can also choose alternatives))

Taverna allows the user to inspect and save intermediate inputs and outputs of individual processors both during and after a workflow invocation.

Outputs can be saved in different manners.
breakpoints allow users to stop the workflow and edit data before going on.
iterations:

when a processor expects single sequence and receives a list of sequences iteration takes place automatically (we have run the CQP experiment on a list of expressions with success). Specific iterations behaviors can be defined. We have been able to deal correctly with the iteration problems derived from the foreach loop in the scenario.
fault tolerance

Taverna includes the following fault tolerance settings:

· the ability to retry after failures

· user can set the number of retries

· user can set the time between retries

· the ability to define alternative processors when all retries have been exceeded

· the ability to define a processor as 'critical', in this case the workflow stops

Workflow information
This report applies to the workflow titled 'cqp' authored by 'no author' and with LSID 'urn:lsid:net.sf.taverna:wfDefinition:50ec877e-92a1-4e2e-8952-9d0c23764582'. The textual description, if any is shown below :

Resource usage report

This display shows the various external resources used by the current workflow. It does not show resources such as local operations or string constants which are run within the enactment engine. Services are categorized by resource host and type, and the name of the instance of each service shown to the right.

	Resources on igraine.upf.es, 2 instances.

	Web service
	WSDL Defined at /cqp/service.wsdl

	
	Operation name
	Processors

	
	QueryCqpExpression
	QueryCqpExpression

	
	GetPendingResults
	GetPendingResults

Discovery, metadata-management and grimoires registry:

Feta is the component within myGrid responsible for semantic service search. Feta is composed of two components, namely Feta Client and Feta Engine. The Feta Client is a GUI-plug-in to Taverna which is used to search for services descriptions of which are provided by the Feta Engine

Tverna includes a good discovery tool, user can search by: name & description and, most interesting, by tasks, method and resources used, input and output, and type. Good and rich search tool.
OWL-DL. Search criteria follow the domain ontology (i.e. bioinformatics task, data resource etc) with drop-down menus offering a choice of ontology terms to construct queries.
Grimoires, the MyGrid registry:

Originally developed for the myGrid Project (www.mygrid.org.uk). Currently, a managed programme project of Open Middleware Infrastructure Institute www.omii.ac.uk
UDDI includes three components for Web Services discovering:

· White Pages — address, contact, and known identifiers;

· Yellow Pages — industrial categorizations based on standard taxonomies;

· Green Pages — technical information about services exposed by the business.

In UDDI we can add metadata using the tModels by specifying an URL. There is a link between the tModel and the WSDL of the registered web service, this means that we cannot search for metadata as in the UDDI we only have a URL.

The Grimoires registry hosts descriptions of services and workflows. Service and workflow interfaces are sometimes underspecified and therefore difficult to use in an automated manner; hence, the myGrid registry augments their interfaces with metadata such as functionality, semantic information about their inputs and outputs, or various metrics (e.g. perceived quality of service, trust).

Grimoires is a UDDIv2 compliant service registry
Grimoires provides metadata annotation/discovery and WSDL registration/discovery functions that are not supported by UDDI
Grimoires offers lifetime management

All data in Gromoires are represented as RDF triples, Discovery can be perferomed by

· -task

· input/output semantic type

· application

· method

· resource

Multiple queries can be issued at the same time to save the communication time. Multiple searching criteria can be combined in one query, leaving the join work to the registry.

exercise: CQP query:

Although Taverna includes some kind of “IF THEN” clause, we have not been able to used it in this example. We have tried to run the ResultsAvailable processor alone (the one which from an input ticket number returns true or false depending on whether the ticket is ready or not) giving an input number. However we can not see the output and the system reports 'no renderer available'. Although, the 'if true then' and 'if false then' processors seem a good way to implement the IF THEN condition, we have not been able to run the experiment as the system can not deal with the Boolean true/false outputs of the ResultsAvailable processor.

As we have not been able to include the IF THEN condition, we have eliminated the conditional construct. The final workflow can be seen in

[image: image2.png]

Ilustración 1 TAVERNA graphical WF for CQPquery
Exercise: GetLanguage + CQPquery
We could only partially implement this scenario.

[image: image3.png]* Workflow Inputs

expression

Language

A part from the inputs and outputs (all in blue), all boxes in the image represent the processors used in this workflow. Notice that the real output of the workflow is the KWIC, the rest of the outputs are intermediate outputs and they are there just for testing purposes.

Green boxes contain remote processors. In this case, remote processes include GetLanguage, QueryCQPExpression and GetPendingResults. Remember we obviated the conditional processor ResultsAvailable as we were not able to manage it in Taverna.

Purple boxes include in-house processors which in this case are used to manage complex input/output data types. Note that in this ‘simple’ scenario we need up to three in-house input/output renderers.

Finally, light brown boxes include java beanshells. These include:

· The “set_corpus” beanshell is used to establish the conditional statements “if language = X then corpus = Y”.

· The FormatInputText beanshell is used to transform the initial input string into a list of elements containing a word from text in the format requirements of the CQPquery WS plus the corpus value, that is: ‘[word=”word1”] corpus, [word=”word2”] corpus, [word=”word3”] corpus,…’. This beanshell generates a list of CQP expressions and corpus pairs that will eventually be the input of the QueryCqpExpression service.
· The SplitWordCorpus beanshell is used to split each pair of CQPexpression-corpus. Note that this processor receives a list of pairs. Remember that, in Taverna, when a processor expects single sequence and receives a list of sequences iteration takes place automatically.
Note that the QueryCqpExpression processor requires two inputs (the CQPexpression and the corpus value) and receives a list of inputs. When we have multiple inputs, the default iteration strategy of Taverna is to iterate over all combinations of input values. In our case, this strategy is not desirable as we need the inputs to be consumed in the alternative ‘first against first, second against second, …’ style. Taverna allows defining alternative iterations strategies. In this case we choose the ‘Dot cross’ strategy which worked correctly.
exercise: Currency Converter:

Runs OK:

Although in the corresponding WSDL document input parameters include information about admisible values; Taverna seems not to 'listen' to this. It would be nice that the user knew what are the expected values the system needs (Triana includes this facility).
a fragment of WSDL del CurrencyConverter specifying admissible values for currency names:
<s:simpleType name="Currency">
<s:restriction base="s:string">
<s:enumeration value="AFA"/>
<s:enumeration value="ALL"/>
<s:enumeration value="DZD"/>
<s:enumeration value="ARS"/>
...
3. KEPLER

3.1 Technical overview

	paradigm
	Data flow based

	language
	Proprietary language. Workflows can only be created and executed using Kepler tool.

uses the proprietary Modelling Markup Language (MoML).

	concurrence
	The concurrence control is based on Merge as well that is enough for many workflows but not for some more sophisticated.

	parallelism
	Parallelism is full executed as normal in Kepler.

	loops
	Kepler has a lot in common with Taverna, it has no loops since it is data flow driven but in Kepler is not used the internal iteration system that Taverna has. In this way, any kind of iteration should be described using tricky ways. In addition, dynamic variables cannot be used as loop exit conditions.

	conditions
	good conditional components. We find select, switch, comparator, logic function, equal, isPresent and some more…

	exception handling
	exception handling is not available in Kepler. Although the user can program raising exceptions in the required situations, there is not a way of catching exceptions when a web service is missing, timeouts, etc…

	
	Kepler allows to encapsulate algorithms easily in components (in Kepler are called actors). This is very helpful for connecting components that need small tidy up in the data before get connected.

3.2 Descriptive information

	developers
	Developed by the members of the Ptolemy project at UC Berkeley.

	domain
	Molecular biology, ecology, geosciences, chemistry and oceanography.

	maturity
	First Kepler alpha 6 version released on April 29, 2005

Last release (Kepler 1.0.0) May 2008
google search:
kepler “web services” 21,800 results
kepler “webservices” 6,580 results
Kepler is nightly updated.

	future plans
	

	community
	kepler-users mailing lists with moderate usage.

kepler-dev mailing list or technical discussions of how to build and extend Kepler with active usage

Kepler includes a kepler repository wich can be accessed from the web. The tool allows searching the repository. The organisation of the reporitory and search capabilities is not developed.

	eHumanities
	Text-mining.

MultiChek (the Multivalment – Chesire- Kepler VRE project) aims at developing a collaborative engineer environment able to provide new methods of creating, sharing, disseminating and reusing scholarly information.

	integration
	

	documentation
	Good documentation for both users and developers. Help manuals are good. Flash demos and examples.

3.3 GUI

Easy installation and well documented. The Workstation includes user manual, examples and a Kepler Actor reference file.

The graphical tool is good and has nice functionalities; however we faced some refreshing problems. (When editing and instantiating Java components, we had to shut down and restart the application in order to refresh the whole workflow).

Editing workflows:

Actors:

In Kepler processors are called actors. The system includes a large standard library of local actors. The way 'remote actors' are included in workflows differs from that of Taverna and Triana. In this case, the user needs to choose the correct actor 'type' from the local library. Once the relevant actor is draged into the editor window, we need to populate it with information concerning the wsdl uri and the method name.
In our case, we have to choose between WebServiceActor and WSWithComplexTypes. These actors invoke the Web service and broadcast the response through their output ports. But whereas the first deals with web service operation with simple types, the later deals with web services with complex types. This means that the user needs to know weather the remote service requires simple or complex input types
.
Note that in Triana and Taverna the way to 'load' remote processors from web services is quite different. In these cases, the user enters the WSDL URI and the system populates the local library with the external processors. Once the remote processors are in the local library, the user drag&drops them into the editor.
Again, the way GUIs deal with processors requiring complex input types is different. In Triana, the user needs to select the appropriate input renderer. In Taverna, the system automatically offers the possibility to include the local tool XMLsplitter which deals with complex input types.
Adding a New Java Actor to Kepler
Kepler allows adding local Java Actors (the equivalent Java Beans in Taverna). Java Actors are edited and compiled outside Kepler before we can ‘import’ and use them in the workstation. For non-expert users, this is not an easy scenario.

Directors

In Kepler, every workflow requires a director. The user selects the relevant Director which directs the execution of the workflow. The list of directors includes: Synchronous Dataflow (SDF), Process Networks (PN), Dynamic Dataflow (DDF), Continuous Time (CT) and Discrete Events (DE). For a non expert user, choosing the appropriate Director is a non-trivial task.

exercise: CQP query with boolean condition:

We have been able to define the CQP query exercise with Boolean condition using the Boolean Switch component. We run the experiment with no problems (after a long while struggling against actors and directors). Note, however, that this only works provided the Boolean Switch gets a true input. In case of a false input we need a retry mechanism which is not allowable.
[image: image4.png]43 Applications Places system 55 4@

Ele Edit View Worklow Tools Window Help

alll Thujul31, 10556 PM

CIEYEEY

>0

|

LR

]
q

Components | oata |

Search

(] Search repository

Search Reset

SDF Director

String Constant
t5 word="mundial"]

S Components
Projects
Disciplines
Staistcs

0 resuts found

=3

CQPquery (complex type)
. GatPendingResults (complex)

return

String Constant2

CORPUSTECNICCA|

@ (@ (Gm.. |[@ Abou... | @ trian.. |[[2) WS_S... | = Docu.. | B mart.. | | Bahsi.. | & Speci.. | K fleyh... | K fiesh.. | | 1

| fullee

(K filesh... |

exercise: GETLanguage + CQP query:

Although the desired workflow was simple we encountered many problems as we had to deal with iteration, conditional component and format conversion:

· Iteration: the idea was that the initial input text should be splitted into single words and that each word was sent to the CQPQuery via some kind of foreach loop. We were not able to deal with this using local tools. Kepler allows editing local Java processors: We can define a Java processor that splits the input string and sends each word in a foreach loop. Note, however, that we still have to face the problem of having an iteration process with two inputs: a list of words (which fits the foreach loop) and a single value (the language parameter).

· Conditional component: we need some conditional component that assigns a corpus label depending on the language involved (CORPUSTECNICCA for Catalan, CORPUSTECNICAES for Spanish and CORPUSTECNICAEN for English). The only way we found to implement such a condition was by using IF/ELSE components (it would be nice to have an IF/ELSEIF/ELSE conditional component). This means that for each language involved, we need to provide an IF/ELSE component that returns true or false depending on the input data. Each IF/ELSE component is linked to a corresponding Boolean Switch component that triggers an additional string generator component which eventually provides the corpus label. Note also that for each IF/ELSE branch of the workflow definition we need to define the follow-up to the end of the whole process.
· Format conversion: CQPQuery requires an input with the format [word=”inputword”], so we need to transform a string like inputword into the required format.

Here we list all the components used in the workflow definition which only cover the process from input reading to CQPQuery. Note that here we only give one IF/THEN component; this means that from (7) to (11) the process needs to be duplicated any time we deal with a new language value.
1) String Costant local component that reads input text
2) WSWithComplexTypes component that executes GetLanguageResult on remote server.
3) Composite actor (local component) to retrieve results from previous component, we get language

4) String Matches local component used to define the appropriate corpus depending on the language. In this case, String Matches returns ‘true’ if input string is ‘spanish’ and ‘false’ otherwise.

5) BooleanSwitch component to deal with Boolean outputs returned from previous step. If the input is true the workflow continues, if the input is false the workflow stops.
6) String Constant local component used to generate the Spanish corpus name. This name is sent to next component.

7) StringSplitter local component used to convert the initial input string into an array of strings.

8) ArrayToElements local component that returns the elements of an array. Note that we could only retrieve the first element. We found no way to define iteration over the input array.

9) StringReplace local component used to conform input string (the initial word in input text) to the format requirements of CQPQuery resource. In this case we add [word=” before the string.

10) StringReplace local component used to conform input string (the initial word in input text) to the format requirements of CQPQuery resource. In this case we add ”] after the string in order to get something like [word=”word_to_be_looked”].

11) WSWithComplexTypes component that executes CQPQuery and returns a ticket number. This component takes as input the corpus label and the word generated throughout (7)-(10).

exercise: Currency Converter:

We edited the workflow using the WSWithComplexType.

exercise: Get Language

Runs OK (we have used a WSWithComplexType)

4. A Taxonomy of Scientific Workflow Systems for Grid Computing (Jia Yu and Rajkumar Buyya)

	Name
	Organization
	Prerequisite
	Grid Integration
	Applications
	Availability

	TRIANA

	Cardiff University,
	Grid

Application

Toolkit

(GAT)
	GAT (JXTA,

Web

services,

Globus)
	Compute-

intensive
	the Apache

Software

License

	TAVERNA
	Collaboration

between several

European Institutes

and industries.

http://taverna.sourc

eforge.net/
	Java 1.4+
	Web

services,

Soaplab,

local

processor,

BioMoby,

etc.
	Service Grids
	GNU Lesser

General Public

License (LGPL)

	KEPLER
	
	Java
	Globus, Storage Resource Broker (SRB), EcoGrid, Web services
	Scientific workflow applications
	UC Berkeley Licence

	Workflow Design Taxonomy Mapping

	Name
	Structure
	Model
	Composition

Systems
	QoS Constrains
	

	TRIANA
	Non-DAG
	Abstract
	User-directed

Graph-based
	N/A
	

	TAVERNA
	DAG
	Abstract/Concrete
	User-directed

- Language-based

-Graph-based
	N/A
	

	KEPLER
	Non-DAG
	Abstract/Concrete
	User-directed

-Graph-based
	N/A
	

	Workflow Scheduling Taxonomy Mapping.

	Name
	Architecture
	DecisionMaking
	Planning Scheme
	Strategies
	Performance Estimation

	TRIANA
	Decentralized
	Local
	Just in-time
	Performance-driven
	N/A

	TAVERNA
	Centralized
	Local
	Just in-time
	Performance-driven
	N/A

	KEPLER
	Centralized
	User-defined
	User-defined
	User-defined
	N/A

	Information Retrieval, Fault-tolerance and Data Movement Taxonomy Mapping

	Name
	Information Retrieval
	Fault-tolerance
	Data Movement

	TRIANA
	Based on GAT protocol
	Based on GAT manager
	Peer-to-Peer

	TAVERNA
	Service information is retrieved

through DAML-S web service

ontology, domain ontology

information service, and UDDI
	Task Level

• Retry

• Alternate Resource
	Centralized

	KEPLER
	User-defined
	Task Level

• Alternative resource

Workflow Level

• User-defined exception

 handling

• Workflow rescue
	Centralized

Mediated

Peer-to-Peer

Conditional structures in Grid Workflow Managers

Conditional workflow management: A survey

and analysis

Emir M. Bahsi, Emrah Ceyhan and Tevfik Kosar

	Name
	If
	Switch
	while

	Triana
	Y
	N
	Y

	Taverna
	Y
	N
	N

	Kepler
	Y
	Y
	N

�Grid Resource Allocation Management del Globus project

�Grid(Lab) Resource Management del GridLab project

�We have found an odd behavior: when using WebServiceActor instead of a (required) WSWithComplexType actor the workflow runs ok before saving it. Once, the workflow is saved it no longer runs.

