Formal Definition

From WebLichtWiki

Jump to: navigation, search

Contents

 [hide

Preliminaries

  • \mathcal{N} – a set of all the possible value names,
  • n \in \mathcal{N} – a value name,
  • \mathcal{F} – a set of all the possible feature names,
  • f \in \mathcal{F} – a feature name,
  • F \subseteq \mathcal{F} – a feature set,
  • V \subseteq \mathcal{F} \times \mathcal{N} – feature/value relation, a set of \langle f, n \rangle ordered pairs, i.e. a binary relation between  \mathcal{F} and  \mathcal{N} .


Example:

  • F1 = {lang,type} – a feature set containing two feature names lang and type,
  • V1 = {(lang,en),(lang,de),(type,text / plain) - feature/value relation contianig three ordered pairs.


Profile

A profile is a tuple P = \langle F_P, V_P\rangle describing some input/output data for a web service:

  • F_P \subseteq \mathcal{F} – profile features, a feature set of data features,
  •  V_P: F_P \mapsto \mathcal{N} – profile feature/value map , a function from profile features to their values representing input data.


Example:

  • F_{P_1} = \{lang, type\}
  • V_{P_1} = \{(lang,en),(type,text/plain)\}


Input

A web service input is a tuple I = \langle F_I, V_I, F_{IU}, V_{IS}\rangle

  • input features F_I \subseteq \mathcal{F} a set of features that must be present in the input of a web service,
  • input feature/value relation V_I \subseteq \mathcal{F_I} \times \mathcal{N} a relation representing possible values of the input features of a web service,
  • user specifiable input features F_{IU} \subseteq F_I features that a user may specify,
  • input selected feature/value map V_{IS} : F_I \mapsto \mathcal{N}, V_{IS} \subseteq V_I a total function mapping each input feature to its selected value.

Example:

  • F_{I_1} = \{lang, type\} ,
  • V_{I_1} = \{(lang,en),(lang,de),(type,text/plain),(type,application/pdf)\} ,
  • F_{ {UI}_1} = \{lang\} ,
  • VIS = {(lang,en),(type,text / plain)}.

Output

A web service output is a tuple O = \langle F_O, V_O, V_{OS}, D, new\rangle

  • output features F_O \subseteq \mathcal{F} a feature set representing an output of a web service,
  • output feature/value relation V_O \subseteq \mathcal{F_O} \times \mathcal{N} a relation representing possible values of the output features of a web service,
  • output selected feature/value map V_{OS} : F_O \mapsto \mathcal{N}, V_{OS} \subseteq V_O a total function mapping each output feature to its selected value.
  • input dependence map D: V_I \mapsto V_D, where V_D \subseteq 2^{V_O} , such that \bigcap V_D = \varnothing maps input feature/value pair to a set of dependent output feature/value pairs.
  • new - a web service output does not include its input, i.e. V_I \cap V_O = \varnothing .


Example:

  • F_{O_1} = \{lang, type\} ,
  • V_{O_1} = \{(lang,en),(type,text/html)\} ,
  • VOS = {(lang,en),(type,text / html)},
  • D_1 = \varnothing ,
  • new1 = true.

Service

A web service chaining description is a tuple S = \langle I, O\rangle.

  • input I a web service input,
  • output O a web service output.

Chaining Requirements

  • required input features F_{IR} = F_I \setminus F_U ,
  • matching profile values V_{PM} = \{(f,v) \in V_P : f \in F_{I} \} .

Example:

  • F_{ {IR}_1} = F_{I_1} \setminus F_{ {UI}_1} = \{type\} ,
  • V_{ {PM}_1} = \{(lang,en), (type,text/plain)\} .


Match Function

A match function M: \langle \mathcal{S} \times \mathcal{P} \rangle \mapsto \{0,1\} from a set of all the possible web service/profile tuples into zero or one. If the value is one then profile P \in \mathcal{P} describes a possible input of web service S \in \mathcal{S} . M is defined as follows:


M(S,P) =
     \begin{cases}
	1, & F_{IR} \subseteq F_P \text{, and}\\
	&V_{PM} \subseteq V_I \text{, and}\\
	&\text{if }new=true \text{ then } F_O \cap F_P = \varnothing\\
	0, & otherwise
     \end{cases}

Example:

Profile P_1=\langle F_{P_1}, V_{P_1}\rangle describes a possible input of service S_1=\langle I_1, O_1\rangle where:

  • I_1=\langle F_{I_1}, V_{I_1}, F_{ {IU}_1}, V_{ {IS}_1}\rangle,
  • O_1=\langle F_{O_1}, V_{O_1}, V_{ {OS}_1}, D_1, new_1\rangle

because:

  • F_{ {IR}_1} \subseteq F_{P_1} , i.e. \{type\} \subseteq \{lang, type\} , and
  • V_{PM} \subseteq V_I , i.e. \{(lang,en),(type,text/plain)\} \subseteq \{(lang,en),(lang,de),(type,text/plain),(type,application/pdf)\} , and
  • the output is new i.e new1 = true.

Specialisation Function

A specialisation function E: \langle \mathcal{S} \times \mathcal{P} \rangle \mapsto \mathcal{S} . E is defined as follows:


E(S,P) = S_N = \langle I_N, O_N\rangle such that:

  • I_N=\langle F_I, V_{I_N}, F_{IU}, V_{ {IS}_N}\rangle, where:
    • V_{ {IS}_N} = \{(f,v) \in V_{IS} : f \in F_P \rightarrow (f,v) \in V_{PM}\} ,
    • V_{I_N} = \{(f,v) \in V_I : f \in F_P \rightarrow (f,v) \in V_{PM}\} ,

and

  • O_N=\langle F_{O}, V_{O_N}, V_{ {OS}_N}, new \rangle , where:
    • V_T = \bigcup_{v \in V_{ {IS}_N} } D(v) ,
    •  V_{ {OS}_N} = V_T \cup \{(f,v) \in V_{OS} : f \notin domain(V_T)\} ,
    •  V_{O_N} = \{(f,v) \in V_O : f \in domain(V_T) \rightarrow (f,v) \in V_T\} ,